UCID- 20666

: _ Code Development With The
EAGLES Engineering Problem-Solving Environment

n/ B. S. Lawver
p D. W. O'Brien
, RCU l, 7'/ 0 M. E. Poggio
- "‘*JJECT N 00 _ Computer Systems Research Group
N Ty, fo [?pr\‘a, P Y Engineering Regearch Division
[-, ‘& L

February 7, 1986

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and
may or may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
. Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or sssumes any legal Hability ar responsibility for the accuracy, completeness, or
usefulness of any information, spparaius, product, or process disclosed, or represents that its use would not
infringe privately owned righta. Reference herein to any specific commercial products, process, or service by

recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government
or the University of California, and shall not be used for advertising or product endorsement purposes,

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Roed

Springfield, VA 22161
Price Page A,
Code Range ‘
Aol Microfiche
Papercopy Prices
A02 001-050
A03 051-100
A4 101-200
A0S 201-300
A06 301-400
A07 401-500
A0S 501-600
A9 601

Introduction

FEAGLES is a set of computer programs which assist in the development and use of engineering
analysis and simulation codes. This paper introduces EAGLES to the developers of engineering
codes. EAGLES’ capabilities, functions, and tools for code development are explained. EAGLES
offers the following benefits in writing and using modeling and simulation codes:

1. A consistent system of menus for picking functions, commands or alternative choices of
any kind.

2. Forms to be browsed and used to enter data and other information.

3. A uniform help facility to describe events and choices while using EAGLES.

4. Easy prototyping of new codes or algorithms.

5. Modular construction of new sequences of codes and algorithms with pre- and post-process
graphics display and highly interactive control of the process.

6. The ability to browse and change data and algorithms during the analysis or simulation.

Background

The EE Department develops and imports Engineering codes. The diversity of these codes and
their differing human-machine interactions, graphics, data representation and report formats have
frustrated engineers. Rapid prototyping of a new algorithm or application is usually not possible.
These have become roadblocks to effective use of computer-aided engineering at Livermore and

elsewhere.

Existing Fortran and Pascal codes typically dedicate as much as 80% of their lines to data handling,
display and user interaction. However, the code developer’s expertise and interest is usually the
code’s fundamental algorithms. Expansion and radical changes to the code’s operation or data
display are often not even considered. The problem then becomes how to modularize these codes,
separating I/O and interfaces from algorithms; how to support a variety of codes with consistent
data and human interfaces; and how to integrate all this with still other unmodified codes.

The CAE thrust area develops EAGLES environment to meet the problems being faced by the
developers and users of engineering codes. EAGLES’ goal is to improve the engineers ability to
use computer-based engineering tools. There were two dominant considerations in developing the

EAGLES environment:

1. The electronics engineers at Livermore use VAX computers running the VMS operating
system for local interactive computing. VAXstation II workstations are coming into LLNL,
supporting the variety of computer-aided engineering codes. The VAXstation offers excel-
lent windowing, graphics, interactive techniques and a great potential for making codes
more usable.

2. Object-oriented programming tools offer modularity and flexibility not previously available
to code writers (refer to Appendix A). These tools isolate major functions of a code (e.g.
algorithms, data manipulation, user interaction) and allow them to be used.

Capabilities In Place Today And Planned

EAGLES supports both multiuser VAX computers and the newer VAXstation workstations. To-
day EAGLES is available on the Tektronix 4105/7 and RetroGraphics terminals, as well as the
VAXastation II. In the future, EAGLES may be moved to the UNIX operating system. This would
allow it to use more specialized hardware like the IRIS workstation which supports high speed 3D

graphics.

The EAGLES Development Project is currently mid-way through its initial phase, using engineering
controls tools as a test-bed. Controls codes and algorithms under EAGLES include:

1. The M interpretive lmguage for interactive matrix calculation, manipulation and the build-
ing of control systems supporting matriz, system and stgnal data types.

2. A spreadsheet-like matrix editor uniquely suited to handling matrices of double precision
complex numbers.

3. A graphical block diagram editor for hierarchical design of feedback control systems sup-
porting Multi-input/Multi-output (MIMO) systems development and modification.

4. Numerical libraries including Linpack and Fispack.
5. Controls-specific graphics display of data.
6. An interactive engineering controls simulator (planned for EAGLES integration next year).

Most of the functions and capabilities described in this paper are already available to controls
engineers. EAGLES plans to continue development and support of the EAGLES environment
and to add more engineering tools. Engineering modeling and circuits codes, and simulation with
animated graphics are prime candidates for EAGLES.

Functions Available with EAGLES

EAGLES offers considerable advantages for prototyping new capabilities. Tools for the code devel-
oper include panels and wrappers to aid in data display and interfaces, as well as user menus and
Jorms. Menus and forms are simple program functions a code developer can use to retrieve the
user’s menu choice or the input data from a form. Control of applications and graphical display of

results, at this point, are more application specific.

Panels and Windows

The ability to run EAGLES with a dynamic, windowed display improves the use of engineering
codes. Panel and window tools are crucial to the development of the EAGLES menu and form
systems as well as human-computer interfaces for engineering codes within EAGLES.

Professor Kenneth Joy of UC Davis developed the concept of panels to interface programs to a
variety of workstation and terminal windowed display systems. Panels are virtual windows. The
abstract interface isolates the low level workstation or terminal characteristics from the code.

EAGLES’ panels, though well suited to run on workstations, are also supported on ASCII-based
graphics terminals. On an ASCII-based terminal EAGLES runs one process at a time. But various
panels that contain menus, forms, and other tools may be displayed on the screen (overlapping if
necessary or desired). The bit-mapped graphics display on the VAXstation II makes more flexible
use of windows. Several codes may be running in different windows, each of them using more

windows to display menus, forms, and tools.

Menue

EAGLES provides menus as a consistent user interface for selecting alternative functions, com-
mands, algorithms or data. EAGLES menus are horizontal and dynamic pull-down type menus
(a la Apple’s Macintosh). Terminal cursor keys or thé VAXstation’s mouse are used as a pointing
device for making menu selections.

Forms

Forms are used to interactively enter data, parametric and program control information. The
engineer responds to the codes query by browsing a captioned form and filling in the necessary
information. Default values may be pre-entered on the form under control of the code. Some

entries may be mandatory, others optional.

Help

EAGLES offers a help facility that allows help information to be displayed on the screen in a help
panel. The help text is kept in a file external to the application program and may be edited by any
text editor available on the computer system running EAGLES.

Wrappers

EAGLES uses wrappers to integrate existing codes and code libraries. The concept of a wrapper
was formalized by research done independently by Professor Joy of UC Davis and Dr. Brad Cox
at Schlumberger-Doll Research. EAGLES refined ideas from both models to form our definition of
wrappers. The wrapper converts data to-and-from EAGLES and the format used by a Fortran or

Pascal engineering code.

Wrappers handle the data conversion, range checking, error reporting and sequencing through a
set of functions. The summary below may help in the understanding of EAGLES wrappers, their
intent and implementation.

What is an EAGLES wrapper?
- a mechanism to combine several dissimilar codes, libraries and subroutines to make a new
capability.
- a database interface between codes, libraries and subroutines.
- a control sequencer of several codes to make them appear as one.
- a mechanism to use codes in the EAGLES object-oriented environment with other tools in

any desired way.

An EAGLES wrapper can be implemented as
- an object of the object-oriented programming environment (an Objective-C program).
- a command file controller.
- a menu command sequencer.

Fortran, Pascal or C programs.

a database management system.

Graphics

EAGLES uses graphics to effectively display data from engineering codes. EAGLES attempts to
isolate graphics from the code, supporting wrapped application-specific data display for better
flexibility and interactivity.

EAGLES supports both the DIGLIB and GKS low level graphics libraries. DIGLIB is important
for the many existing engineering codes that were developed using it. GKS is important because
most new workstations support this standard.

Integrating Engineering Codes Into EAGLES

Integrating a new code or capability into EAGLES is usually a cooperative effort between the code
developer and the EAGLES development team. There are three ways new capabilities may be

integrated into EAGLES:

1. Incorporate into a generated menu pre-existing codes which will run with their own data
handling and user interface when selected from the menu. This is the easiest way, integrated
into EAGLES in minutes. But this does not take advantage of EAGLES wrappers or
forms, or the interactivity and flexibility of the object-oriented environment. This can be
recommended as a first step for a code developer to get an introduction to EAGLES.

2. Separate an existing code (or develop a new code) into algorithms, display, data handling
and program control. Computational algorithms (code libraries and subroutines) may then
be wrapped. Menus for picking various algorithms or functions may be created. Forms for
entering data, and other information may be created. Application-specific graphics may be
developed. This offers many of the benefits of EAGLES, yet requires minimal contribution
by the EAGLES development team (see figure 1).

3. Develop an interactive controller using EAGLES development tools (Objective-C, LEX
and YACC) to manipulate wrapped algorithms and data objects (see figure 2). The engi-
neering controls language M was developed in this fashion and offers the most flexibility.

generator
forms
generator
e . = COBE
ALEORITHMS
Code Usor
Desusloper Enginesr
CODE

CONTROL

wrapper

genarsior
DISPLAY

Figure 1. A pictorial representation showing the EAGLES/code intermediate level of
integration. EAGLES development team members interface, if necessary,
with the code developer to assist in using the tools provided by EAGLES
(represented here by toolboxes).

Code
flaveloper

CODE

Figure 2.

generator
application
forms
generofior
RLEDRITHMS
user
. Engloe
wrapper
gemsrator :
COBE
CONTROL
Sbjective-C
Lex & YACC
DISPLAY

A pictorial representation showing the EAGLES/code high level of inte-
gration. This type of integration requires that the code developer invest

significant time in leu-nmg EAGLES tools and mterfacmg with EAGLES
development team members.

New controls capabilities and applications are easy to develop in M. And it is possible
to interactively try alternate designs, or modify a design or data while in the process of
running a simulation.

Code developers or engineers wishing to bring a new modeling or simulation capability under
EAGLES need to consider the following:

- The code developer should have access to the Fortran or Pascal source to an existing code
or code library. It will probably have to be modified or broken apart.

- The fundamental algorithms, their use, and limitations must be well understood by the
code developer.

- The code developer will be expected to specify and develop the data structures and sequence
of operations to be used with the code.

- The code developer must commit to share the responsibility and invest the time to integrate
the code into EAGLES.

Once the interfaces are well understood, the code developer can construct an EAGLES environ-
ment with wrappers, menus and forms. EAGLES has tools for menu and form construction and
controllers for their use by the engineering code. A tool is also available for wrapping code libraries,
subroutines and unmodified codes. With this set of tools it is easy for the code developer to pro-
totype a user interface of menus and forms and later revise the user interface without making a

sizable investment in the interface development cycle.

Menu Generator Tool

EAGLES has a menu generator that allows code developers to build a menu structure that is
consistent with other previously generated EAGLES menus. Integration of menus into a code is
done through a menu controller which ensures that the manipulation of menus is consistent among
various EAGLES applications. The menu controller can display a hierarchical set of menus to

execute other tools as well.

Form Generator Tool

EAGLES has a form generator which allows a code developer to define captioned forms to be filled
in by the engineer as the code is being used. The form generator is picked from the EAGLES menu
and uses a form to aid in the design of new forms. Incorporation of a form into a code is done
through a carefully controlled interface similar to the menu controller.

Wrapper Generator Tool

A wrapper generator is available to the code developer to assist in integrating codes or libraries
into the EAGLES environment. Today the wrapper generator is limited to Fortran numeric data
structures. Automatic wrapper generation is still under development and more complex data
structures will be available. The wrapper generator can be picked from the EAGLES menu and
uses a form to be filled in describing data structures.

Appendix A

Object-oriented programming

Object-oriented programming technology has developed over the last fifteen years. Until recently
it was only available on very high coet, experimental ‘'workstations. Object-oriented programming
is now available in Xerox’s SMALLTALKSO0, Symbolic’s FLAVOR, and PPI's Objective-C. Object-
oriented programming has provided fresh, innovative approaches to system design, the most recog-
nizable being Apple’s Macintosh. Object-oriented languages employ several concepts not previously
found in programming languages.

An object can be thought of as a data structure with predefined behaviors. Classes couple this data
with a structure of methods (functions or algorithms) providing powerful building blocks that are
well suited for implementing interfaces (i.e. menus, forms and wrappers). The ability to “bind”
data and algorithms at the time the engineer runs an application offers the flexibility to browse
through the input, algorithms and results and to make changes to each, perhaps choosing a different
algorithm or method in the middle of a problem’s solution.

A hybrid object-oriented language, Objective-C, was selected for developing the EAGLES envi-
ronment. This language adds object-oriented constructs to the C programming language. These
constructs implement the important object-oriented programming concepts of object/class struc-
ture, encapsulation, and snheritance while offering full access to the C programming language for
more computationally intensive chores. The features of Objective-C lend themselves well to the

goals of the EAGLES environment.

Objects
virtual machines that require and retain some data themselves and do work. Objects are

dynamically bound at run-time. One may think of objects as data records which carry the
descriptions of the functions that may be carried out on them, exhibiting a behavior (e.g.
a matrix of numbers becoming the transpose of itself upon receiving a message to do so).

Messages
requests made of an object to exhibit one of its predefined behaviors (functions).

Classes
the collections of related methods. Classes of methods are built in a hierarchy or tree
structure. This structure allows a method to share data and behaviors with all other
methods above it in the tree. This is referred to as inheritance. Every object associated
with a class can respond to any message that invokes a method in that class’s inheritance
tree. Classes are also the factories that produce new objects of a similar type and contain
the shared part of these similar objects. '

Methods
related methods (behaviors or functions) are grouped in classes. A method is invoked by
sending an object a message.

Encapsulation
the powerful by-product of the object/class structure which keeps a clean, simple program
interface to arbitrarily complex objects.

